Simulation modelling of mechanical systems for intra-row weeding in a precision farming approach

Author:

Assirelli AlbertoORCID, ,Liberati PaoloORCID,

Abstract

Aim of study: To test new approaches to perform mechanical weeding inside the row in horticulture and tree fruit fields. The idea is to weed the row by skipping the crop by means of a rotating system instead of a traditional crosswise one. Area of study: North of Italy. Material and methods: Numerical models have been developed to simulate mechanical weeding over time by generating numerical maps to quantify the different kind of worked areas. Main results: Considering the efficiency of weed control on the row, the rotating plant-skipping system with vertical axis (RPSS-VA model) with two working tools gives the best performance index (1.1.RWA% = 95.9%). A similar performance can be obtained by the crosswise displacement plant-skipping system (CDSS model, 1.1.RWA% = 95.9 %), but with very high crosswise translation velocity (with va/vr ratio = 1/5, 1.1.RWA% = 94.5%). With regard to the outwards worked area the RPSS-VA models give the best performances (2.2.%OWAR index from 127.2% up to 282.3%). To reduce the worked area outside the row, the FBTS models give lower index (2.1.OWAR%), while the RPSS-HA works only on the row, but with the lower 1.1.RWA% index among all tested models (55.8%). Research highlights: Rotating systems resulted more efficient than traditional ones, and provide considerations on the use of electric drive power instead of hydraulic one. This study highlights also the need of new approaches in designing lighter working tools. Lastly, the proposed classification of the worked areas could be used as reference standard.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

Reference32 articles.

1. Assirelli A, Liberati P, Santangelo E, Del Giudice A, Civitarese V, Pari L, 2015. Evaluation of sensors for poplar cutting detection to be used in intra-row weed control machine. Comput Electron Agr 115: 161-170.

2. Assirelli A, Santangelo E, Spinelli R, Pari L, 2016. A single-pass to reduce tillage technique for the establishment of short-rotation poplar (Populus spp) plantation. Croat J For Eng 37 (1): 61-69.

3. Davies DHK, Hoad S, Maskell PR, Topp K, 2004. Looking at cereal varieties to help reduce weed control inputs. Proc Crop Protection in Northern Britain. Scott Agr Coll, Bush Estate, Penicuik, Midlothian, UK.

4. Fennimore SA, Slaughter DC, Siemens MC, Ramon GL, Mazin NS, 2016. Technology for automation of weed control in specialty crops. Weed Technol 30: 823-837.

5. Gaines TA, Zhang W, Wang D, Bukuna B, Chisholm ST, Shaner DL, et al., 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci 107: 1029-1034.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3