Author:
Ettouhami Mohamed Karim,Atifi Adil,Mounir Hamid,Amadane Yassine
Abstract
In this study, a Finite Element model has been implemented based on numerical modelling simulations to predict the mechanical behaviour of a representative unit of the fuel cell stack. The GDL deformation has been modelled as a combination of elastic deformation and fibres slippage. Mechanical stresses distribution and deformation are presented concerning the previous model work l with nonlinear orthotropic behaviour of the GDL. The results also show that the state of the stresses in the membrane are highly heterogeneous and largely exceed its elastic limit. The results show that the influence of the temperature variation is not significant in generating stresses. However, the influence of the moisture variation is very significant in generating stresses. Therefore, the increase in relative humidity from 30% to 90° % at T=25°C causes an increase in the maximum Von Mises stress of 0.0836MPa.
Publisher
Mediterranean Journal of Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献