Online Unbalance Detection and Diagnosis on Large Flexible Rotors by SVR and ANN trained by Dynamic Multibody Simulations

Author:

García Peyrano Oscar,Vignolo JuanORCID,Mayer Rodrigo,Marticorena Matias

Abstract

Multiple-stage steam turbine generators, like those found in nuclear power plants, pose special challenges with regards to mechanical unbalance diagnosis. Several factors contribute to a complex vibrational response, which can lead to incorrect assessments if traditional condition monitoring strategies are used without considering the mechanical system as a whole. This, in turn, can lead to prolonged machinery downtime. Several machine learning techniques can be used to integrally correlate mechanical unbalance along the shaft with transducer signals from rotor bearings. Unfortunately, this type of machinery has scarce data regarding faulty behavior. However, a variety of fault conditions can be simulated in order to generate these data using computational models to simulate the dynamic response of individual machines. In the present work, a multibody model of a 640 MW steam turbine flexible rotor is employed to simulate mechanical unbalance in several positions along the shaft. Synchronous components of the resulting vibration signals at each bearing are obtained and utilized as training data for two regression models designed for mechanical unbalance diagnosis. The first approach uses an artificial neural network and the second one utilizes a support vector regression algorithm. In order to test their performance, the stiffness of each bearing in the multibody simulation was altered between 50% and 150% of the training model values, random noise was added to the signal and several dynamic unbalance conditions were simulated. Results show that both approaches can reliably diagnose dynamic rotor unbalance even when there is a typical degree of uncertainty in bearing stiffness values.

Publisher

Intelligence Science and Technology Press Inc.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3