Nonlinear Modelling Application in Distillation Column

Author:

Abdullah Zalizawati,Aziz Norashid,Ahmad Zainal

Abstract

Distillation columns are widely used in chemical processes and exhibit nonlinear dynamic behavior. In order to gain optimum performance of the distillation column, an effective control strategy is needed. In recent years, model based control strategies such as internal model control (IMC) and model predictive control (MPC) have been revealed as better control systems compared to the conventional method. But one of the major challenges in developing this effective control strategy is to construct a model which is utilized to describe the process under consideration. The purpose of this paper is to provide a review of the models that have been implemented in continuous distillation columns. These models are categorized under three major groups: fundamental models, which are derived from mass, energy and momentum balances of the process, empirical models, which are derived from input-output data of the process, and hybrid models which combine both the fundamental and the empirical model. The advantages and limitations of each group are discussed and compared. The review reveals a remarkable prospect of developing a nonlinear model in this research area. It also shows the discovery of new advance methods in an attempt to gain a nonlinear model that is able to be used in industries. Neural network models have become the most popular framework in nonlinear model development over the last decade even though hybrid models are the most promising method to be applied for future nonlinear model development.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3