Thermal Radiation, Chemical Reaction and Viscous Dissipation Effects on Unsteady MHD Flow of Viscoelastic Fluid Embedded in a Porous Medium

Author:

Zigta Binyam

Abstract

In this paper the effect of unsteady, incompressible, magneto hydrodynamics filled with electrically conducting viscoelastic fluid in an infinite vertical Couette porous channel wall embedded in a porous medium is analyzed. A uniform magnetic field is applied perpendicular to the channel wall. The temperature of the moving channel wall varies periodically and the temperature difference between the two infinite vertical channel walls is high due to thermal radiation. The Eckert number is the ratio of the kinetic energy of the flow to the temperature difference of the channel walls. The solution of the governing equations is obtained using regular perturbation techniques. These techniques are used to transform partial differential equations that are difficult to solve in closed form. These equations are reduced to a set of ordinary differential equations in dimensionless form so can be solved analytically. The effects of physical parameters Viz. Hartmann number, Viscoelastic parameter, Eckert number, Permeability of porous medium, Chemical reaction parameter, thermal Grashof number for heat transfer, modified Grashof number for mass transfer, frequency parameter and Schmidt number on flow parameters Viz., velocity, temperature and concentration has been discussed and shown graphically. The theoretical results have been supported by MATLAB code simulation study. The results show that velocity decreases with increasing values of frequency, Hartmann number and viscoelastic parameter but reverse effect is observed with temperature, thermal Grashof number, modified Grashof number and permeability of porous medium. Furthermore, The result shows that an increment in both thermal radiation parameter and Eckert number results in decrement of temperature near the moving porous channel wall while it approaches to a zero in the region close to the boundary layer of the stationary channel wall,. An increment in both chemical reaction and Schmidt number results in decreasing concentration. The velocity of fluid increases as Grashof number and modified Grashof number increases.

Publisher

Budapest International Research and Critics Institute

Subject

Polymers and Plastics,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3