EEG motor imagery classification using machine learning techniques

Author:

Páez-Amaro R. T.,Moreno-Barbosa E.,Hernández-López J. M.,Zepeda-Fernández C. H.,Rebolledo-Herrera L. F.,De Celis Alonso BenitoORCID

Abstract

A brain-machine interface (BMI), is a device or experimental setup that receives a brain signal, classifies it, and then uses it as a computer command. Even if large amounts of work exist in the field, there is not a consensus on which kind of learning methodology (deep learning, convolutional networks, AI, etc.) and/or type of algorithms in each methodology, are best to run BMIs. The aim of this work was to build a low-cost, portable, easy-to-use and a reliable BMI based on Motor Imagery Electro-encephalography. To this end, different algorithms were compared to find the one that best satisfied such conditions. In this study, motor imagery EEG signals, from both PhysioNet public data and from our own laboratory obtained using an Emotiv headset, were classified with four machine learning algorithms. These algorithms were: Common spatial patterns combined with linear discriminant analysis, Deep neural network, convolutional neural network and finally Riemannian minimum distance to mean. The mean accuracy for each method was 78%, 66%, 60% and 80% respectively. The best results were obtained for the baseline vs Motor Imagery comparison. With global-training public data, an accuracy between 86.4% and 99.9% was achieved. With global-training lab data, the accuracy was above 99% for Common Spatial Patterns and Riemannian cases. For lab data, the classification/prediction computing time per event were 8.3 ms, 18.1 ms, 62 ms and 9.9 ms, respectively. In the discussion a comparison between the results presented here and state-of-the-art of methodologies and algorithms for BMIs can be found. We concluded that Common spatial patterns and Riemannian minimum distance to mean, algorithms resulted in fast (computing time) and effective (success rate) tools for their implementation as deep learning algorithms in BMIs.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3