An appraisal of the observed crystallinities of volcanic materials

Author:

Shamloo HannahORCID,Kent Adam

Abstract

There is a broad consensus that magma eruptibility—the ability of magma stored in the subsurface to erupt onto Earth's surface—is strongly controlled by viscosity. Related to this, a critical parameter that controls viscosity is crystallinity. However, there is uncertainty in the crystallinities that distinguish eruptible from non-eruptible magmas, and whether highly crystalline magmas (>60 vol.%) could be erupted in some conditions. An underutilized but important source of information for understanding this relationship is the observed crystallinities in erupted volcanic materials, which by definition represent a set of eruptible magmas. Here we present a compilation of reported crystallinities for nearly 1000 volcanic samples of differing composition, tectonic setting, and eruption style, which provides valuable insight into the fundamental mechanisms which drive eruptions. Overall, the 95th percentile crystallinity value of our full dataset is 57 vol.%, and \>99 % of all non-dome samples have crystallinity ≤53 vol.%. This suggests that 50–60 vol.% crystallinity represents a fundamental limit for eruptibility for most volcanic rocks. Some dome samples are clear exceptions to this and are erupted with considerably higher crystallinities. There is also a significant correlation between crystallinity and whole rock SiO2 content as observed previously, but a shallow slope suggests whole rock and melt silica content have less impact on critical crystallinity for erupted magma than previously thought. Melt viscosity (as a function of SiO2, temperature, and H2O content) and crystallinity both play important roles on increasing effective viscosity, where melt viscosity plays a more important role at low crystal fractions, and crystallinity plays a more important role at crystallinities greater than ~40 vol.%.

Publisher

Volcanica

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3