HARNESSING AI FOR ENVIRONMENTAL RESILIENCE: MITIGATING HEAVY METAL POLLUTION AND ADVANCING SUSTAINABLE PRACTICES IN DIVERSE SPHERES

Author:

Miller Tymoteusz,Cembrowska-Lech Danuta,Kisiel Anna,Krzemińska Adrianna,Kozlovska Polina,Jawor Milena,Kołodziejczak Maciej,Durlik Irmina

Abstract

As the global community faces unprecedented environmental challenges, the application of artificial intelligence (AI) in environmental studies has become an essential tool for mitigating the impacts of human activity. This paper presents an in-depth analysis of the role of AI in detecting, monitoring, and managing heavy metal pollution across various spheres of development. By employing advanced algorithms, predictive modeling, and machine learning techniques, we showcase the potential of AI in identifying contamination sources, assessing risk levels, and guiding remediation strategies. Furthermore, we explore the integration of AI-driven solutions with sustainable practices in agriculture, industry, and urban planning to reduce the future release of heavy metals into the environment. Finally, we discuss the limitations and future trends in AI applications for environmental studies and emphasize the need for interdisciplinary collaboration to address global environmental challenges holistically.

Publisher

European Scientific Platform (Publications)

Subject

General Agricultural and Biological Sciences

Reference7 articles.

1. Bao, Y., Zhou, Q., Luo, H., Wu, D., & Tang, J. (2020). Artificial intelligence in environmental pollution risk assessment: Present situation, challenges and future perspectives. Environmental Pollution, 267, 115392.

2. Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., & Jiang, H. (2018). Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7-27.

3. Gibbs, A. K., Grunwald, S., Mansor, N., & Jerez, S. B. (2020). Machine learning in soil and environmental sciences. Geoderma, 376, 114566.

4. Li, X., Poon, C. S., Liu, P. S., Qi, J., Xie, X., & Liu, C. (2014). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 45, 25-34.

5. Nandi, S., Sarkar, S., & Das, D. K. (2021). A review on machine learning applications in environmental monitoring and assessment. Environmental Monitoring and Assessment, 193(8), 1-28.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3