Abstract
INTRODUCTION: It is of great research significance to explore whether China can achieve the "two-carbon target" on time. The MLP model combines nonlinear modeling principles with other techniques, possessing powerful adaptive learning capabilities, and providing a viable solution for carbon emission prediction.
OBJECTIVES: This study models and forecasts carbon emissions in Jiangsu Province, one of China's largest industrial provinces, aiming to forecast whether Jiangsu province will achieve the two-carbon target on time plan and provide feasible pathways and theoretical foundations for achieving dual carbon goals.
METHODS: Based on the analysis of the contributions of relevant indicators using the Grey Relational Analysis method, a comprehensive approach integrating the STIRPAT model, Logistic model, and ARIMA model is adopted. Ultimately, an MLP prediction model for carbon emission variations is established. Using this model, simulations are conducted to analyze the carbon emission levels in Jiangsu Province under different scenarios from 2021 to 2060.
RESULTS: The time to reach carbon peak and the likelihood of achieving carbon neutrality vary under three scenarios. Under the natural scenario of no human intervention, achieving carbon neutrality is not feasible. While under human-made intervention scenarios including baseline and intervention scenarios, Jiangsu Province is projected to achieve the carbon neutrality target as scheduled, attaining the peak carbon goal, however, proves challenging to realize by the year 2030.
CONCLUSION: The MLP model exhibits high accuracy in predicting carbon emissions. To expedite the realization of dual carbon goals, proactive government intervention is necessary.
Publisher
European Alliance for Innovation n.o.
Reference18 articles.
1. Q. Du, Q. Chen, R. Yang. Carbon emission prediction of Chinese provinces based on Logistic model. Resources and Environment in the Yangtze Basin, 2013; 22(2): 140-151.
2. G. Gao, Y. Wen, L. Wang, R. Xu. Research on carbon peaking in urban agglomerations based on factors affecting carbon emissions. Business Management Journal, 2023; 45(02): 39-58.
3. X. Zou, R. Wang, G. Hu, Z. Rong, J. Li. CO2 emissions forecast and emissions peak analysis in Shanxi Province, China: An application of the LEAP Model. Sustainability, 2022; 14(2): 637.
4. Y. He, H. Wen, C. Sun. Forecasting China’s total carbon emissions and its structure during the 14th Five-Year plan period: Based on the mixed data ADL-MIDAS model. On Economic Problems, 2021; (04): 31-40
5. N. Han, X. Luo. Carbon emission peak prediction and reduction potential in Beijing-Tianjin-Hebei region from the perspective of multiple scenarios. Journal of Natural Resources, 2022; 37(05): 1277-1288.