Data science analysis of Vassiliev invariants and knot similarity based on distributed machine learning

Author:

Huo Chenggang

Abstract

INTRODUCTION: Knot theory has a long history, and as a branch of topology, it has received extensive attention. At present, the scientific analysis of data based on the similarity of Vassiliev invariants and knots under machine learning technology is the focus of the mathematical community. However, at present, there are some difficulties in the research work on the similarity of Vassiliev invariants and knots. These difficulties not only delay the progress of Vassiliev invariants research, but also slow down the speed of knot similarity research.OBJECTIVES: However, with the acceleration of the intelligent process, various intelligent technologies have been applied in the research of mathematics, biology and physics, providing excellent help for the research of many disciplines. Therefore, machine learning technology could be used to carry out new research on Vassiliev invariants and knot similarity.METHODS: Traditional knot analysis technology was combined with machine learning technology to find a more efficient and stable way of exploring Vassiliev invariants and knot similarity. his paper proposed a research method of data scientific analysis based on Vassiliev invariants and knot similarity under machine learning technology. Its purpose was to combine traditional knot research methods with machine learning technology to improve the efficiency of knot research. The algorithm proposed in this paper was the knot Vassiliev invariant analysis algorithm based on machine learning, which could use the intelligent and efficient analysis algorithm of machine learning technology to process the data of complex knots. This algorithm has improved the accuracy of the analysis of knot characteristics, and reduced the analysis time and the memory consumption at runtime.RESULTS: By testing the similarity between the Vassiliev invariant based on machine learning and the knot, the results showed that the analysis accuracy of the traditional Vassiliev invariant computing technology for the chiral characteristics, the number of intersections and the number of knots in the knot image was 84.25%, 83.27% and 85.56% respectively. The accuracy of knot Vassiliev invariant analysis algorithm based on machine learning for these indicators was 91.87%, 92.66% and 92.12% respectively. Obviously, the knot Vassiliev invariant analysis algorithm based on machine learning was superior to the traditional knot computing technology, and its analysis results were more excellent.CONCLUSION: In general, the research topic proposed in this paper has been proved to be of practical value. This research result proved that machine learning technology could play an excellent role in the current knot research, which correspondingly expanded the research direction of Vassiliev invariants and knot similarity.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3