Machine Learning based Exploratory Data Analysis (EDA) and Diagnosis of Chronic Kidney Disease (CKD)

Author:

Mehta Vaishali,Batra Neera,Poonam ,Goyal Sonali,Kaur Amandeep,Dudekula Khasim Vali,Victor Ganta Jacob

Abstract

INTRODUCTION: This research paper presents an exploratory data analysis (EDA) approach to diagnose Chronic Kidney Disease (CKD) using machine learning algorithms. OBJECTIVES: This paper focuses on early and accurate detection of CKD using a comprehensive dataset of clinical and laboratory parameters to minimize the risk of patients’ health complications with timely intervention through appropriate medications. METHODS: Machine Learning based prediction models including Naive Bayes, KNN, Logistic regression, decision tree, ensemble modelling, Random Forest and Ada Boost. RESULTS: The results indicate that the Naive Bayes algorithm achieved highest accuracy and sensitivity in detecting CKD. CONCLUSION: For reduced features and for binary class classification, Naive Bayes classifier gives best performance in terms of accuracy and computational cost. Other algorithms are good for multi-class classification but for binary class, they are little expensive than Naive Bayes.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3