Affiliation:
1. Plant Production and Protection Dept., College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
Abstract
The present study was carried out to evaluate agronomic traits and assessment of genetic variability of some wheat genotypes at Qassim region, Saudi Arabia', during 2010/11 and2011/12 seasons. Fourteen wheat genotypes including five bread wheat and nine durum wheat genotypes were evaluated in randomized complete block design with three replications. The genotypes were evaluated for ten different yield contributing characters viz., days to heading, days to maturity, grain filling period, grain filling rate, plant height, number of spikes m-2, kernels spike-1, 1000-kernel weight, grain yield and straw yield. The combined analysis of variance indicated the presence of significant differences between years for most characters. The genotypes exhibited significant variation for all the characters studied indicating considerable amount of variation among genotypes for each character. Maximum coefficient of variation was observed for number of spikes m-2 (17%), while minimum value was found for days to maturity. Four genotypes produced maximum grain yield and statistically similar, out of them two bread wheat genotypes (AC-3 and SD12) and the other two were durum wheat (AC-5 and BS-1). The genotypes AC-3, AC-5 and BS-1 had higher grain yield and stable in performance across seasons. The estimation of phenotypic coefficient of variation in all the traits studied was greater than those of the genotypic coefficient of variation. High heritability estimates (> 0.5) were observed for days to heading, days to maturity, and plant height, while the other characters recorded low to moderate heritability. The high GA % for plant height and days to heading (day) was accompanied by high heritability estimates, which indicated that heritability is mainly due to genetic variance. Comparatively high expected genetic advances were observed for grain yield components such as number of kernels spike-1 and 1000-kernel weight. Grain yield had the low heritability estimate with a relatively intermediate value for expected genetic advance. The results of principle component analysis (PCA) indicated that the superior durum wheat genotypes for grain yield in the two seasons (AC-5 and BS-1) are clustered in group II (Fig. 2). Also, the superior two bread wheat genotypes (AC-3 and SD12) were in group I. Therefore, it could be future breeding program to develop new high yielding genotypes in bread and durum wheat.
Publisher
Southern Cross Publishing
Subject
Plant Science,Agronomy and Crop Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献