Features of technological synthesis and properties of ZnO-Cd based materials for photocatalytic applications. Review

Author:

Didus R. I.,Myroniuk D. V.,Myroniuk L. A.,Ievtushenko A. I.

Abstract

In this review, the current state of ZnO-Cd based materials for photocatalytic applications is summarized. Relevant technological synthesis methods such as pulsed laser deposition, magnetron sputtering, electrodeposition, sol-gel, metalorganic chemical vapor deposition, evaporating, spray pyrolysis, reflux are considered, and recent developments in effective and reproducible synthesis technology of nano- and microstructured zinc oxide, doped with cadmium and solid solutions of Zn1‑xCdxO for photodecomposition of organic pollutant molecules are discussed. The synthesis technology and level of Cd doping has a significant effect on the structure and morphology of zinc oxide and, as a result, on the optical and photocatalytic properties. The figures of merit, the theoretical limitations and rational control of the concentration of the cadmium alloying impurity is necessary to create a material with balanced optical properties and photocatalytic activity. Lastly, the importance of doping ZnO by isovalent Cd impurity significantly improves its photocatalytic properties due to a narrowing of the band gap, a decrease in the rate of recombination of electron-hole pairs, which increases the efficiency of spatial charge separation, the formation of active oxide radicals and an increase in the specific surface area. Thus, ZnO-Cd based materials are the most promising photocatalytic materials for organic pollutants.

Publisher

Vasyl Stefanyk Precarpathian National University

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3