Analytical determination of a quasi-stationary electromagnetic field created by magnetic moments and eddy currents in conducting half-space

Author:

Vasetsky Yu. M.ORCID

Abstract

Aim. Study of the distribution of a three-dimensional alternating quasi-stationary electromagnetic field at the surface of conducting half-space with strong skin-effect, the source of which is an arbitrarily oriented magnetic moment. Methodology. The expressions for non-uniform electromagnetic field with strong skin effect are used for the analysis, which is based on the found exact analytical solution of the general three-dimensional problem and the use of expansion into asymptotic series with respect to a small parameter that is proportional to the ratio of the field penetration depth to the distance between the sources of the external field and the surface of body. Specific expressions at the surface are completely determined by the known field of external sources. In this work, the external magnetic moment field is used. Results. For strong skin effect, expressions for the electric and magnetic field strength are obtained separately for the components of the magnetic moment oriented perpendicularly and parallel to the flat surface between the dielectric and conducting areas. The features of the electromagnetic field distribution are analyzed depending on the value of introduced small parameter. The results are presented for the module and phase shift of the field strength with respect to the phase of the external field source. Originality. The expressions found for the electromagnetic field appear to be more general than the use of closed contours with alternating current, since they extend types of external field sources and allow the use of the superposition method instead of integration over the entire contour. Practical value. The found specific analytical expressions of the electromagnetic field at the surface for the external field of magnetic moments significantly simplify the solution of the problems, since they do not require additional solution of the field equations. References 20, figures 8.

Publisher

National Technical University Kharkiv Polytechnic Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3