R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation

Author:

Chassot Anne-Amandine,Gillot Isabelle,Chaboissier Marie-Christine

Abstract

Sex differentiation is a unique developmental process. Starting from a bipotential gonad, it gives rise to the ovary and the testis, two highly specialized organs that differ morphologically and physiologically despite sharing common reproductive and endocrine functions. This highlights the specific plasticity of the gonadal precursors and the existence of complex antagonistic genetic regulation. Mammalian sex determination is controlled by paternal transmission of the Y-linked gene, sex-determining region Y (SRY). Using mouse models, it has been shown that the main role ofSryis to activate the expression of the transcription factorSox9; either one of these two genes is necessary and sufficient to allow testicular development through Sertoli cell differentiation. Thus, defects inSRY/Sryand/orSOX9/Sox9expression result in male-to-female sex reversal of XY individuals. Molecular mechanisms governing ovarian differentiation remained unknown for a long time, until the discovery of the roles of R-spondin1 (RSPO1) and WNT4. In XX individuals, activation of the β-catenin signaling pathway by the secreted proteins RSPO1 and WNT4 is required to allow granulosa cell differentiation and, in turn, ovarian differentiation. Thus, mutations inRSPO1result in female-to-male sex reversal of XX patients, and mouse models have allowed the identification of genetic cascades activated by RSPO1 and WNT4 to regulate ovarian development. In this review, we will discuss the respective roles of RSPO1, WNT4, and the β-catenin signaling pathway during ovarian differentiation in mice.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3