Capacitation in the presence of methyl-β-cyclodextrin results in enhanced zona pellucida-binding ability of stallion spermatozoa

Author:

Bromfield Elizabeth G,Aitken R John,Gibb Zamira,Lambourne Sarah R,Nixon Brett

Abstract

While IVF has been widely successful in many domesticated species, the development of a robust IVF system for the horse remains an elusive and highly valued goal. A major impediment to the development of equine IVF is the fact that optimised conditions for the capacitation of equine spermatozoa are yet to be developed. Conversely, it is known that stallion spermatozoa are particularly susceptible to damage arising as a consequence of capacitation-like changes induced prematurely in response to semen handling and transport conditions. To address these limitations, this study sought to develop an effective system to both suppress and promote thein vitrocapacitation of stallion spermatozoa. Our data indicated that the latter could be achieved in a bicarbonate-rich medium supplemented with a phosphodiesterase inhibitor, a cyclic AMP analogue, and methyl-β-cyclodextrin, an efficient cholesterol-withdrawing agent. The populations of spermatozoa generated under these conditions displayed a number of hallmarks of capacitation, including elevated levels of tyrosine phosphorylation, a reorganisation of the plasma membrane leading to lipid raft coalescence in the peri-acrosomal region of the sperm head, and a dramatic increase in their ability to interact with heterologous bovine zona pellucida (ZP) and undergo agonist-induced acrosomal exocytosis. Furthermore, this functional transformation was effectively suppressed in media devoid of bicarbonate. Collectively, these results highlight the importance of efficient cholesterol removal in priming stallion spermatozoa for ZP bindingin vitro.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3