miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5

Author:

Chuang Tsai-Der,Panda Harekrushna,Luo Xiaoping,Chegini Nasser

Abstract

MicroRNA-200c (miR-200c) through repression of specific target genes has been associated with cellular transition, tumorigenesis, and tissue fibrosis. We explored the expression and functional aspects of miR-200c in genesis of leiomyomas (LYO), benign uterine tumors with fibrotic characteristic. Using LYO and matched myometrium (MYO;n=76) from untreated and from patients exposed to hormonal therapies (GNRH agonist (GNRHa), Depo-Provera, and oral contraceptives), we found that miR-200c was expressed at significantly lower levels (P<0.05) in LYO as compared with MYO. These levels were lower in LYO from African Americans as compared with Caucasians, patients experiencing abnormal uterine bleeding and those exposed to GNRHa therapy. Gain-of-function of miR-200c in isolated leiomyoma smooth muscle cells (LSMCs), myometrial smooth muscle cells (MSMCs), and leiomyosarcoma cell line (SKLM-S1) repressedZEB1/ZEB2mRNAs and proteins, with concurrent increase in E-cadherin (CDH1) and reduction in vimentin expression, phenotypic alteration, and inhibition of MSMC and LSMC proliferations. We further validatedTIMP2, FBLN5, andVEGFAas direct targets of miR-200c through interaction with their respective 3′ UTRs, and other genes as determined by microarray analysis. At tissue levels, LYO expressed lower levels ofTIMP2andFBLN5mRNAs but increased protein expressions, which to some extent altered due to hormonal exposure. Given the regulatory functions ofZEBs, VEGFA, FBLN5, andTIMP2on cellular activities that promote cellular transition, angiogenesis, and matrix remodeling, we concluded that altered expression of miR-200c may have a significant impact on the outcome of LYO growth, maintenance of their mesenchymal and fibrotic characteristics, and possibly their associated symptoms.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3