Protein phosphorylation in spermatozoa motility of Acipenser ruthenus and Cyprinus carpio

Author:

Gazo Ievgeniia,Dietrich Mariola A,Prulière Gérard,Shaliutina-Kolešová Anna,Shaliutina Olena,Cosson Jacky,Chenevert Janet

Abstract

Spermatozoa of externally fertilizing freshwater fish possess several different modes of motility activation. Spermatozoa of common carp (Cyprinus carpio L.) are activated by hypoosmolality, whereas spermatozoa of sterlet (Acipenser ruthenus) require Ca2+ and low concentration of K+ for motility activation. Intracellular signaling differs between these two species as well, particularly in terms of utilization of secondary messengers (cAMP and Ca2+), and kinase activities. The current study was performed in order to determine the importance of protein phosphorylation and protein kinases for activation of sperm motility in carp and sterlet. Treatment with kinase inhibitors indicates that protein kinases A and C (PKA and PKC) participate in spermatozoa motility of both species. Immunodetection of phospho-(Ser/Thr) PKA substrates shows that phosphorylated proteins are localized differently in spermatozoa of carp and sterlet. Strong phosphorylation of PKC substrate was observed in flagella of sterlet spermatozoa, whereas in carp sperm, PKC substrates were lightly phosphorylated in the midpiece and flagella. Motility activation induced either phosphorylation or dephosphorylation on serine, threonine and tyrosine residues of numerous proteins in carp and sterlet spermatozoa. Proteomic methods were used to identify proteins whose phosphorylation state changes upon the initiation of sperm motility. Numerous mitochondrial and glycolytic enzymes were identified in spermatozoa of both species, as well as axonemal proteins, heat shock proteins, septins and calcium-binding proteins. Our results contribute to an understanding of the roles of signaling molecules, protein kinases and protein phosphorylation in motility activation and regulation of two valuable fish species, C. carpio and A. ruthenus.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3