Inhibition of MTOR signaling impairs rat embryo organogenesis by affecting folate availability

Author:

Higa Romina12ORCID,Rosario Fredrick J3,Powell Theresa L43,Jansson Thomas3,Jawerbaum Alicia12

Affiliation:

1. 1Laboratory of Reproduction and Metabolism, Universidad de Buenos Aires, Facultad de Medicina, Ciudad de Buenos Aires, Buenos Aires, Argentina

2. 2Laboratory of Reproduction and Metabolism, CONICET-Universidad de Buenos Aires, CEFYBO, Ciudad de Buenos Aires , Buenos Aires, Argentina

3. 4Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

4. 3Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Abstract

Mechanistic target of rapamycin (MTOR) is essential for embryo development by acting as a nutrient sensor to regulate cell growth, proliferation and metabolism. Folate is required for normal embryonic development and it was recently reported that MTOR functions as a folate sensor. In this work, we tested the hypothesis that MTOR functions as a folate sensor in the embryo and its inhibition result in embryonic developmental delay affecting neural tube closure and that these effects can be rescued by folate supplementation. Administration of rapamycin (0.5 mg/kg) to rats during early organogenesis inhibited embryonic ribosomal protein S6, a downstream target of MTOR Complex1, markedly reduced embryonic folate incorporation (−84%, P < 0.01) and induced embryo developmental impairments, as shown by an increased resorption rate, reduced embryo somite number and delayed neural tube closure. These alterations were prevented by folic acid administered to the dams. Differently, although an increased rate of embryonic rotation defects was observed in the rapamycin-treated dams, this alteration was not prevented by maternal folic acid supplementation. In conclusion, MTOR inhibition during organogenesis in the rat resulted in decreased folate levels in the embryo, increased embryo resorption rate and impaired embryo development. These data suggest that MTOR signaling influences embryo folate availability, possibly by regulating the transfer of folate across the maternal–embryonic interface.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3