Fishing for neuroendocrine tumors

Author:

Gaudenzi Germano1,Carra Silvia2,Dicitore Alessandra3,Cantone Maria Celeste3,Persani Luca23,Vitale Giovanni13

Affiliation:

1. 1Istituto Auxologico Italiano, IRCCS, Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica ed Oncologica, Milan, Italy

2. 2Istituto Auxologico Italiano, IRCCS, Laboratorio Sperimentale di Ricerche Endocrino-Metaboliche, Milan, Italy

3. 3Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy

Abstract

Neuroendocrine tumors (NETs) are a class of rare and heterogeneous neoplasms that originate from the neuroendocrine system. In several cases, these neoplasms can release bioactive hormones leading to characteristic clinical syndromes and hormonal dysregulations with detrimental impact on the quality of life and survival of these patients. Only few animal models are currently available to investigate pathogenesis, progression and functional syndromes in NETs and to identify new therapeutic strategies. The tropical teleost zebrafish (Danio rerio) is a popular vertebrate model system that offers unique advantages for the study of several biological processes, ranging from embryonic development to human diseases such as cancer. In this review, we summarize recent advances on zebrafish models for NET preclinical research that take advantage of modern genetic and transplantable technologies. In the future, these tools may have a role in the treatment decision-making and tertiary prevention of NETs.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3