Vesicle-associated protein 1: a novel ovarian immunocontraceptive target in the common brushtail possum, Trichosurus vulpecula

Author:

Nation A,Cui S,Selwood L

Abstract

Ovarian-based immunological research is currently restricted to proteins of the zona pellucida. This study examined the immunocontraceptive potential of a novel vesicle-associated protein, VAP1, previously isolated from the vesicle-rich hemisphere of the brushtail possum oocyte. Seven female possums were immunized against recombinant glutathione S-transferase-VAP1 fusion protein. Control animals (n=3) received antigen-free vaccinations. Following immunization, regular blood sampling determined the level and duration of immune response. Animals were monitored daily, pre- and post-immunization, to determine estrous cycling activity and the percentage of reproductive cycles yielding viable young. The reproductive tracts and somatic organs of VAP1-immunized (n=7), control-immunized (n=3) and non-immunized (n=5) animals were collected and examined by histology and transmission electron microscopy. VAP1 immunization caused a strong and sustained immune response. Elevated levels of VAP1 antibody binding were detected in sera following initial injections, and immune titers rose as boosters were administered. Immunization had no adverse effect upon animal behavior or body condition. Immunized females demonstrated no major change in annual estrous cycling activity; however, the percentage of reproductive cycles resulting in pouch young decreased significantly (P<0.05) by 40%. Histological and ultrastructural analyses revealed an abundance of lipid-like degradation bodies within the ooplasm of developing oocytes and the cytoplasm of failing uterine zygotes. Active macrophage invasion of enlarged endometrial glands was observed in the uteri of two females. Reproductive tract changes are discussed in relation to observed fertility decline. The results of this study indicate that VAP1 has exciting potential as an immunocontraceptive target for possum control in New Zealand.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3