NETest is superior to chromogranin A in neuroendocrine neoplasia: a prospective ENETS CoE analysis

Author:

Malczewska Anna1,Oberg Kjell2,Kos-Kudla Beata1

Affiliation:

1. 1Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, Katowice, Poland

2. 2Department of Endocrine Oncology, University Hospital, Uppsala, Sweden

Abstract

Introduction The absence of a reliable, universal biomarker is a significant limitation in neuroendocrine neoplasia (NEN) management. We prospectively evaluated two CgA assays, (NEOLISA, EuroDiagnostica) and (CgA ELISA, Demeditec Diagnostics (DD)) and compared the results to the NETest. Methods NEN cohort (n = 258): pancreatic, n = 67; small intestine, n = 40; appendiceal, n = 10; rectal, n = 45; duodenal, n = 9; gastric, n = 44; lung, n = 43. Image-positive disease (IPD) (n = 123), image & histology- negative (IND) (n = 106), and image-negative and histology positive (n = 29). CgA metrics: NEOLISA, ULN: 108 ng/mL, DD: ULN: 99 ng/mL. Data mean ± s.e.m. NETest: qRT-PCR – multianalyte analyses, ULN: 20. All samples de-identified and assessed blinded. Statistics: Mann–Whitney U-test, Pearson correlation and McNemar-test. Results CgA positive in 53/258 (NEOLISA), 32 (DD) and NETest-positive in 157/258. In image- positive disease (IPD, n = 123), NEOLISA-positive: 33% and DD: 19%. NETest-positive: 122/123 (99%; McNemar’s Chi2= 79–97, P < 0.0001). NEOLISA was more accurate than DD (P = 0.0003). In image- negative disease (IND), CgA was NEOLISA-positive (11%), DD (8%), P = NS, and NETest (33%). CgA assays could not distinguish progressive (PD) from stable disease (SD) or localized from metastatic disease (MD). NETest was significantly higher in PD (47 ± 5) than SD (29 ± 1, P = 0.0009). NETest levels in MD (35 ± 2) were elevated vs localized disease (24 ± 1.3, P = 0.008). Conclusions NETest, a multigenomic mRNA biomarker, was ~99% accurate in the identification of NEN disease. The CgA assays detected NEN disease in 19–33%. Multigenomic blood analysis using NETest is more accurate than CgA and should be considered the biomarker standard of care.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3