Dp71 gene disruption alters the composition of the dystrophin-associated protein complex and neuronal nitric oxide synthase expression in the hypothalamic supraoptic and paraventricular nuclei

Author:

Benabdesselam Roza,Dorbani-Mamine Latifa,Benmessaoud-Mesbah Ouahiba,Rendon Alvaro,Mhaouty-Kodja Sakina,Hardin-Pouzet Hélène

Abstract

DP71 is the major cerebral dystrophin isoform and exerts its multiple functions via the dystrophin-associated protein complex (DAPC), also comprised of β-dystroglycan (β-DG) and α1-syntrophin (α1-Syn). Since DP71 disruption leads to impairment in the central control of the osmoregulatory axis, we investigated: 1) the DAPC composition in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) of Dp71-null mice; and 2) the expression and activity of neuronal nitric oxide synthase (nNOS), because it is a potential partner of the DAPC and a functional index of osmoregulatory axis activity. In wild-type mice, dystrophins and their autosomal homologs the utrophins, β-DG, and α1-Syn were localized in astrocyte end feet. In Dp71-null mice, the levels of β-DG and α1-Syn were lower and utrophin expression did not change. The location of the DAPC in astrocytic end feet suggests that it could be involved in hypothalamic osmosensitivity, which adapts the osmotic response. The altered composition of the DAPC in Dp71-null mice could thus explain why these mice manifest an hypo-osmolar status. In the SON and PVN neurons of Dp71-null mice, nNOS expression and activity were increased. Although we previously established that DP140 is expressedde novoin these neurons, the DAPC remained incomplete due to the low levels of β-DG and α1-Syn produced in these cells. Our data reveal the importance of DP71 for the constitution of a functional DAPC in the hypothalamus. Such DAPC disorganization may lead to modification of the microenvironment of the SON and PVN neurons and thus may result in a perturbed osmoregulation.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3