Epigenetics, ovarian cell plasticity, and platelet-rich plasma: Mechanistic theories

Author:

Sills E Scott12ORCID,Wood Samuel H3

Affiliation:

1. Office for Reproductive Research, Center for Advanced Genetics/FertiGen, San Clemente, California, USA

2. Regenerative Biology Group, Fertility Reserve Bank San Clemente, California, USA

3. Gen 5 Fertility Center, San Diego, California, USA

Abstract

Ovarian platelet-rich plasma (PRP) is claimed to restore the fertility potential by improving reserve, an effect perhaps mediated epigenetically by platelet-discharged regulatory elements rather than gonadotropin-activated G-protein coupled receptors, as with stimulated in vitro fertilization (IVF). The finding that fresh activated platelet releasate includes factors able to promote developmental signaling networks necessary to enable cell pluripotency tends to support this theory. The mechanistic uncertainty of intraovarian PRP notwithstanding, at least two other major challenges confront this controversial intervention. The first challenge is to clarify how perimenopausal ovarian function is reset to levels consistent with ovulation. Perhaps a less obvious secondary problem is to confine this renewal such that any induced recalibration of cellular plasticity is kept within acceptable physiologic bounds. Thus, any ‘drive’ to ovarian rejuvenation must incorporate both accelerator and brake. Ovarian aging may be best viewed as a safeguard against pathologic overgrowth, where senescence operates as an evolved tumor-suppression response. While most ovary cells reach the close of their metabolic life span with low risk for hypertrophy, enhanced lysosomal activity and the proinflammatory ‘senescence-associated secretory phenotype’ usually offsets this advantage over time. But is recovery of ovarian fitness possible, even if only briefly prior to IVF? Alterations in gap junctions, bio-conductive features, and modulation of gene regulatory networks after PRP use in other tissues are discussed here alongside early data reported from reproductive medicine.

Publisher

Bioscientifica

Subject

Urology,Reproductive Medicine,Obstetrics and Gynecology,Embryology

Reference66 articles.

1. Aquaporin CHIP: the archetypal molecular water channel;Agre,1993

2. Neuroendocrine aging precedes perimenopause and is regulated by DNA methylation;Bacon,2019

3. Cellular redox imbalance on the crossroad between mitochondrial dysfunction, senescence, and proliferation;Bakalova,2022

4. Regulation of chromatin by histone modifications;Bannister,2011

5. Preliminary report of intraovarian injections of autologous platelet-rich plasma (PRP) in extremely poor prognosis patients with only oocyte donation as alternative: a prospective cohort study;Barad,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3