Conditional ablation of macrophages disrupts ovarian vasculature

Author:

Turner Emily C,Hughes Jeremy,Wilson Helen,Clay Michael,Mylonas Katie J,Kipari Tiina,Duncan W Colin,Fraser Hamish M

Abstract

Macrophages are the most abundant immune cell within the ovary. Their dynamic distribution throughout the ovarian cycle and heterogenic array of functions suggest the involvement in various ovarian processes, but their functional role has yet to be fully established. The aim was to induce conditional macrophage ablation to elucidate the putative role of macrophages in maintaining the integrity of ovarian vasculature. Using the CD11b-diphtheria toxin receptor (DTR) mouse, in which expression of human DTR is under the control of the macrophage-specific promoter sequence CD11b, ovarian macrophages were specifically ablated in adult females by injections of diphtheria toxin (DT). CD11b-DTR mice were given DT treatment or vehicle and ovaries collected at 2, 8, 16, 24 and 48 h. Histochemical stains were employed to characterise morphological changes, immunohistochemistry for F4/80 to identify macrophages and the endothelial cell marker CD31 used to quantify vascular changes. In normal ovaries, macrophages were detected in corpora lutea and in the theca layer of healthy and atretic follicles. As macrophage ablation progressed, increasing amounts of ovarian haemorrhage were observed affecting both luteal and thecal tissue associated with significant endothelial cell depletion, increased erythrocyte accumulation and increased follicular atresia by 16 h. These events were followed by necrosis and profound structural damage. Changes were limited to the ovary, as DT treatment does not disrupt the vasculature of other tissues likely reflecting the unique cyclical nature of the ovarian vasculature and heterogeneity between macrophages within different tissues. These results show that macrophages play a critical role in maintaining ovarian vascular integrity.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3