Sex hormones, adiposity, and metabolic traits in men and women: a Mendelian randomisation study

Author:

Loh Nellie Y1,Humphreys Edward2,Karpe Fredrik13,Tomlinson Jeremy W13,Noordam Raymond4,Christodoulides Constantinos1

Affiliation:

1. 1Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK

2. 2Nuffield Department of Population Health, University of Oxford, Oxford, UK

3. 3NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK

4. 4Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands

Abstract

Objective Epidemiological and clinical studies have highlighted important roles for sex hormones in the regulation of fat distribution and systemic metabolism. We investigated the bidirectional associations between bioavailable serum testosterone (BioT) in both sexes and oestradiol (E2) in men and adiposity and metabolic traits using Mendelian randomisation (MR). Design and Methods As genetic instruments for sex hormones, we selected all the genome-wide significant, independent signals from a genome-wide association studies (GWAS) in up to 425 097 European ancestry UK Biobank participants. European population-specific, summary-level data for adiposity, metabolic, and blood pressure traits were obtained from the largest publicly available GWAS. Sex-specific, two-sample MR analyses were used to estimate the associations of sex hormones with these traits and vice versa. Results In women, higher BioT was associated with obesity, upper-body fat distribution, and low HDL-cholesterol although, based on analyses modelling the sex hormone-binding globulin-independent effects of BioT, the last two associations might be indirect. Conversely, obesity and android fat distribution were associated with elevated serum BioT. In men, higher BioT was associated with lower hip circumference and lower fasting glucose. Reciprocally, obesity was associated with lower BioT and higher E2, while upper-body fat distribution and raised triglycerides were associated with lower E2. Conclusions Adipose tissue and metabolic dysfunction are associated with deranged sex hormone levels in both sexes. In women, elevated BioT might be a cause of obesity. Conversely, in men, higher BioT appears to have beneficial effects on adiposity and glucose metabolism.

Publisher

Oxford University Press (OUP)

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3