Treatment of benign prostatic hyperplasia and abnormal ejaculation: live imaging reveals tamsulosin – but not tadalafil – induced dysfunction of prostate, seminal vesicles and epididymis

Author:

Seidensticker Mathias1ORCID,Tasch Sabine1,Mietens Andrea1,Exintaris Betty2,Middendorff Ralf1ORCID

Affiliation:

1. Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany

2. Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia

Abstract

In brief One of the most commonly prescribed benign prostatic hyperplasia (BPH) pharmacotherapies, the alpha1-adrenergic blocker tamsulosin, is frequently discontinued, especially by younger patients due to ejaculatory disorders, often without feedback to the attending physician. Using a newly developed ex vivo system simulating sympathetic effects on the most relevant structures for the emission phase of ejaculation, that is seminal vesicles, prostate and the most distal part of the cauda epididymidis, we elucidated that tamsulosin fundamentally disturbed the obligatory noradrenaline-induced contractions in each of these structures which differed to an alternative pharmacotherapy, the PDE5 inhibitor tadalafil. Abstract Structures responsible for the emission phase of ejaculation are the seminal vesicles, the most distal part of the cauda epididymidis and the newly characterized prostate excretory ducts. The emission phase is mainly regulated by the sympathetic nervous system through alpha1-adrenergic receptor activation by noradrenaline at the targeted organs. BPH treatment with alpha1A-adrenergic antagonists such as tamsulosin is known to result in ejaculation dysfunction, often leading to discontinuation of therapy. Mechanisms of this disturbance remain unclear. We established a rodent model system to predict drug responses in tissues involved in the emission phase of ejaculation. Imitating the therapeutic situation, prostate ducts, seminal vesicles and the distal cauda epididymal duct were pre-incubated with the smooth muscle cell-relaxing BPH drugs tadalafil, a novel BPH treatment option, and tamsulosin in an ex vivo time-lapse imaging approach. Afterwards, noradrenergic responses in the relevant structures were investigated to simulate sympathetic activation. Noradrenaline-induced strong contractions ultimately lead to secretion in structures without pre-treatment. Contractions were abolished by tamsulosin in prostate ducts and seminal vesicles and significantly decreased in the epididymal duct. Such effects were not observed with tadalafil pre-treatment. Data visualized a serious dysfunction of each organ involved in emission by affecting alpha1-adrenoceptors localized at the relevant structures but not by targeting smooth muscle cell-localized PDE5 by tadalafil. Our model system reveals the mechanism of tamsulosin resulting in adverse effects during ejaculation in patients treated for BPH. These adverse effects on contractility do not apply to tadalafil treatment. This new knowledge translates directly to clinical medicine.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Reference53 articles.

1. AUA guideline on management of benign prostatic hyperplasia (2003). Chapter 1: Diagnosis and treatment recommendations,2003

2. The development of human benign prostatic hyperplasia with age;Berry,1984

3. AHRQ comparative effectiveness reviews;Brasure,2016

4. Selective alpha 1-adrenoceptor antagonists in benign prostatic hyperplasia: rationale and clinical experience;Chapple,1996

5. Cardiovascular/pulmonary medications and male reproduction;Drobnis,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3