Slo3 K+ channel blocker clofilium extends bull and mouse sperm-fertilizing competence

Author:

Abi Nahed Roland12,Martinez Guillaume12,Hograindleur Jean Pascal12,Le Blévec Emilie12,Camugli Sabine3,Le Boucher Richard3,Ray Pierre F124,Escoffier Jessica12,Schmitt Eric3,Arnoult Christophe12

Affiliation:

1. 1Université Grenoble Alpes, Grenoble, France

2. 2Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France

3. 3IMV Technologies, L’Aigle, France

4. 4CHU de Grenoble, UM GI-DPI, Grenoble, France

Abstract

For artificial insemination (AI) to be successful, it is essential that sperm delivery be perfectly timed relative to ovulation, as sperm lifespan is limited due to oxidative metabolism induced by capacitation. Extending the window of sperm capacitation could therefore increase sperm lifespan, prolong sperm-fertilizing competence and increase AI efficiency. Hyperpolarization of sperm is a crucial step in capacitation and is induced by activation of the potassium calcium-activated channel subfamily U member 1 (KCNU1, also named Slo3 or KSper). Given the essential role played by KCNU1 in capacitation, this study assessed the impact of its pharmacological inhibition on sperm lifespan. We showed that treatment of murine sperm with sub-micromolar concentrations of clofilium, a specific inhibitor of KCNU1, slowed down capacitation, decreased the rate of acrosome reaction and extended the fertilizing competence of capacitated sperm for 12 h. Clofilium also extended fertilizing competence and motility of bovine-capacitated sperm, and increased the rate of fertilization with sperm capacitated for 24 h by 100%, and the rate of blastocyst formation by 150%. Finally, toxicity experiments showed clofilium to have no impact on sperm DNA and no embryotoxicity at the concentration used to extend sperm lifespan. Our results demonstrate that clofilium prolongs fertilizing competence of aging capacitated sperm in vitro in both rodent and bovine species. To our knowledge, this is the first time the duration of sperm-fertilizing competence is shown to be extended by potassium channels blockers.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3