Reciprocal expression of 17α-hydroxylase-C17,20-lyase and aromatase cytochrome P450 during bovine trophoblast differentiation: a two-cell system drives placental oestrogen synthesis

Author:

Schuler G,Özalp G R,Hoffmann B,Harada N,Browne P,Conley A J

Abstract

No definitive information is yet available on the steroidogenic capacity of the two morphologically distinct cell types forming the bovine trophoblast, the uninucleated trophoblast cells (UTCs) and the trophoblast giant cells (TGCs). Hence, in order to localise 17α-hydroxylase-C17,20-lyase (P450c17) on a cellular level and to monitor its expression as a function of gestational age, placentomes from pregnant (days 80–284;n= 19), prepartal (days 273–282; 24–36 h prior to the onset of labour;n= 3) and parturient cows (n= 5) were immunostained for P450c17 using an antiserum against the recombinant bovine enzyme. At all stages investigated, P450c17 was exclusively found in the UTCs of chorionic villi (CV), where staining was ubiquitous between days 80 and 160, but was largely restricted to primary CV and the branching sites of secondary CV between days 160 and 240. Thereafter, a distinct ubiquitous staining reoccurred in the UTCs of all CV in late pregnant, prepartal and parturient animals. Using an antiserum against human aromatase cytochrome P450 (P450arom), specific cytoplasmic staining was observed in TGCs. In placentomes from pregnant cows, staining intensity was higher in mature compared with immature TGCs and was more pronounced in the trophoblast covering big stem villi compared with the trophoblast at other sites of the villous tree. In placentomes of a parturient cow, specific staining was only found in mature TGCs that survived the normal, but substantial, prepartal decline in TGC numbers. These results clearly showed that bovine UTCs and TGCs exhibit different steroidogenic capacities, constituting a ‘two-cell’ organisation for oestrogen synthesis. P450c17 expression appears to be quickly down-regulated and P450arom is up-regulated when UTCs enter the TGC differentiation pathway.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3