In vitro propagation of an economically important medicinal plant Lawsonia inermis L. through nodal segments
-
Published:2021-09-15
Issue:3
Volume:13
Page:897-906
-
ISSN:2231-5209
-
Container-title:Journal of Applied and Natural Science
-
language:
-
Short-container-title:JANS
Author:
Amit ,Rajkumar ,Singh Narender
Abstract
The present investigation aimed to standardize efficient plant regeneration protocol through in vitro culture by using nodal segment for mass multiplication of Lawsonia inermis an economically important medicinal plant species. Mass multiplication of shoots induced on Murashige and Skoog (MS) medium supplemented with different growth regulators like auxins and cytokinins separately and in different combinations. The medium fortified with 6-Benzylaminopurine ( BAP) 1.0 mg/l + kinetin (KN) 1.5mg/l explained best compared to all other combinations. In vitro raised plantlets were excised and transferred in half strength MS medium supplemented with different growth regulators like Indole Butyric acid ( IBA) and naphthalene acetic acid (NAA ) (0.5-3.0 mg/l) in an experiment that gave rise to rooting. The half strength of MS medium additive with IBA in separate and in different combinations with NAA concentrations (0.5-3.0 mg/l) supported root development. The best response of rooting was obtained on half MS medium fortified with 1.0 mg/l IBA. The regenerated plantlets were successfully transplanted to pots. Regenerants were transferred to the field conditions and recorded the survival rate.. Among all the carbon sources and gelling agents used, sucrose (3%) in combination with 0.8 per cent agar-agar has proved significantly better. Multiple shoots formation with longer shoots were achieved on medium with 1.0mg/l BAP and 1.5mg/l Kn. Thus, it is possible to develop a large number of plants of L. inermis through shoot bud regeneration which can cater for the need of pharmaceutical as well as other industries.
Publisher
ANSF Publications
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献