The surface temperatures of flat areas on the Moon

Author:

Zhang Dan1,Zheng Wenchao2ORCID

Affiliation:

1. School of Physics and Electronic Information, Huanggang Normal University 1 , Huanggang 438000, China

2. School of Electrical and Electronic Engineering, Hubei University of Technology 2 , Wuhan 430068, China

Abstract

Lunar surface temperature (LST) is a quantity of special interest for interpreting the thermal character of the regolith. It is affected by the solar irradiance, earthshine, and heat flow for the flat areas on the Moon. We present an improved transient temperature model to calculate temperatures of lunar flat surfaces. The model consists of one-dimensional thermal diffusion equation and two boundary conditions. The improved lunar surface boundary condition allows one to precisely determine the effective solar irradiance (ESI) and earthshine. The simulated surface temperatures suggest consistency with the measured temperatures from the thermocouples of Apollo 15 and 17 heat flow experiments. From the LST simulated with the improved model, it is found the annual-seasonal variations present obvious latitude characters, with the highest surface temperature occurring in late October, November, and December separately at high (>∼72°) latitudes, middle latitudes, and low (<∼20°) latitudes, respectively; the lowest surface temperatures occur in late July. Furthermore, the discrepancies between the maximum and minimum temperatures decrease as latitude increases, as do the maximum and minimum lunar surface temperatures. The surface daytime temperature would change by 179.4 K with a 1322.5 W/m2 change in the ESI. A 0.12 W/m2 and 0.02 W/m2 change of the earthshine and heat flow would lead to 0.5 and 0.09 K in surface nighttime temperature, respectively.

Publisher

AIP Publishing

Reference37 articles.

1. Applications of an energy transfer model to three problems in planetary regoliths: The solid-state greenhouse, thermal beaming, and emittance spectra;J. Geophys. Res.: Planets,1996

2. Lunar surface thermal characteristics from surveyor 1;J. Geophys. Res.,1967

3. Regolith thermal property inversion in the LUNAR-A heat-flow experiment;Bull. Am. Astron. Soc.,2001

4. Heat conductivity and nature of the lunar surface material;Bull. Astron. Inst. Neth.,1948

5. Microwave imaging of Mercury’s thermal emission at wavelengths from 0.3 to 20.5 cm;Icarus,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3