Magnetization characteristics of HTS-stacked ring magnets with and without HTS stack inserts

Author:

Liao Hengpei1ORCID,Dennis Anthony R.2ORCID,Yuan Weijia1ORCID,Zhang Min1ORCID

Affiliation:

1. Applied Superconductivity Laboratory, Department of Electronics and Electrical Engineering, University of Strathclyde 1 , Glasgow G1 1XQ, United Kingdom

2. University of Cambridge 2 Department of Engineering, , Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Abstract

High-temperature superconducting (HTS) trapped field magnets can generate and maintain stable, high magnetic fields without requiring external power supplies. Recently, HTS-stacked ring magnets have garnered significant attention due to their flexible geometry, robust mechanical strength, and proven trapped field performance. In this study, we examine the magnetization characteristics of HTS-stacked ring magnets and observed a trapped field higher than the applied field during field cooling magnetization. We also observed that by inserting HTS stacks into the hollow cavity of the HTS-stacked rings, the center field ceased to exhibit an increased center field. Our analysis revealed that the unique induced current distribution and the penetration sequence are the underlying causes. Inspired by the investigation results, we explored deeper into the magnetization properties and identified that a final trapped field higher than the applied field can be achieved through proper design and magnetization of the HTS-stacked ring magnets. However, even though the trapped central field experiences an increase, this does not translate into an increment in the total trapped flux. Instead, a redistribution of the flux is observed. These findings hold significant implications for the design and application of superconducting magnets.

Funder

Henry Royce Institute

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3