The superharmonic instability and wave breaking in Whitham equations

Author:

Carter John D.1ORCID,Francius Marc2ORCID,Kharif Christian3ORCID,Kalisch Henrik4ORCID,Abid Malek3ORCID

Affiliation:

1. Mathematics Department, Seattle University 1 , Seattle, Washington 98122, USA

2. Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO 2 , Toulon, France

3. Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE 3 , UMR 7342, 13384 Marseille, France

4. Department of Mathematics, University of Bergen 4 , PO Box 7800, 5020 Bergen, Norway

Abstract

The Whitham equation is a model for the evolution of surface waves on shallow water that combines the unidirectional linear dispersion relation of the Euler equations with a weakly nonlinear approximation based on the Korteweg–De Vries equation. We show that large-amplitude, periodic, traveling-wave solutions to the Whitham equation and its higher-order generalization, the cubic Whitham equation, are unstable with respect to the superharmonic instability (i.e., a perturbation with the same period as the solution). The threshold between superharmonic stability and instability occurs at the maxima of the Hamiltonian and L2-norm. We examine the onset of wave breaking in traveling-wave solutions subject to the modulational and superharmonic instabilities. We present new instability results for the Euler equations in finite depth and compare them with the Whitham results. We show that the Whitham equation more accurately approximates the wave steepness threshold for the superharmonic instability of the Euler equations than does the cubic Whitham equation. However, the cubic Whitham equation more accurately approximates the wave steepness threshold for the modulational instability of the Euler equations than does the Whitham equation.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3