A cloud platform for sharing and automated analysis of raw data from high throughput polymer MD simulations

Author:

Xie Tian1ORCID,Kwon Ha-Kyung2ORCID,Schweigert Daniel2ORCID,Gong Sheng1ORCID,France-Lanord Arthur13ORCID,Khajeh Arash2ORCID,Crabb Emily1ORCID,Puzon Michael2ORCID,Fajardo Chris2ORCID,Powelson Will2ORCID,Shao-Horn Yang14ORCID,Grossman Jeffrey C.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Massachusetts Institute of Technology 1 , Cambridge, Massachusetts 02139, USA

2. Toyota Research Institute 2 , 4440 El Camino Real, Los Altos, California 94022, USA

3. Sorbonne Université, Institut des Sciences du Calcul et des Données, ISCD 3 , F-75005 Paris, France

4. Department of Mechanical Engineering, Massachusetts Institute of Technology 4 , Cambridge, Massachusetts 02139, USA

Abstract

Open material databases storing thousands of material structures and their properties have become the cornerstone of modern computational materials science. Yet, the raw simulation outputs are generally not shared due to their huge size. In this work, we describe a cloud-based platform to enable fast post-processing of the trajectories and to facilitate sharing of the raw data. As an initial demonstration, our database includes 6286 molecular dynamics trajectories for amorphous polymer electrolytes (5.7 terabytes of data). We create a public analysis library at https://github.com/TRI-AMDD/htp_md to extract ion transport properties from the raw data using expert-designed functions and machine learning models. The analysis is run automatically on the cloud, and the results are uploaded onto an open database. Our platform encourages users to contribute both new trajectory data and analysis functions via public interfaces. Finally, we create a front-end user interface at https://www.htpmd.matr.io/ for browsing and visualization of our data. We envision the platform to be a new way of sharing raw data and new insights for the materials science community.

Funder

National Energy Research Scientific Computing Center

National Science Foundation

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3