Adsorption-induced transient friction of hydrogels on hydrophilic countersurfaces

Author:

Choi JihoORCID,Yang Kwangmo,Lee Youn-Ki,Lee Sungho,An KunsikORCID,Kim Sung-SooORCID,Kim JihoORCID

Abstract

Soft hydrated permeable surfaces of hydrogels exhibit unique lubrication behaviors, including frictional hysteresis found in tribo-rheometry measurements. A hydrogel lubrication model that describes the transient behavior was previously developed using the structure kinetics model in the field of rheology and rate-and-state friction model, where the friction change is described as a competition between buildup and breakdown rates. In this study, the model is further modified to include the effect of hydrophilicity of a countersurface. Ultraviolet (UV)/ozone treatment on an aluminum surface significantly removes organic materials, resulting in extremely hydrophilic surface. Friction response of a polyacrylamide hydrogel against untreated and UV/ozone-treated aluminum exhibited noteworthy difference in the trajectory of hysteresis. Model fits were conducted using the modified lubrication model on both hystereses, and the fitting parameters of both hystereses are compared with each other to identify a parameter addressing hydrophilicity. Based on the model fits, we suggest that the hydrophilicity of the countersurface initially prevents the adsorption on the hydrogel surface because it holds water better. However, once water goes out of the contact due to contact pressure, a stronger adsorption occurs, which increases friction and decreases the speed dependence of friction.

Funder

National Research Foundation of Korea

Hongik University

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3