Mode decomposition and simulation of cloud cavity behaviors around a composite hydrofoil

Author:

Liu YunqingORCID,Zhu Yichen,Huang BiaoORCID,Wu QinORCID

Abstract

Numerical investigation of the cavity dynamics around a composite hydrofoil with a blunt trailing edge in the cloud cavitating flow is carried out using a tightly coupled fluid–structure interaction method. The hydrofoil is made of a carbon-fiber-reinforced polymers with a ply angle of −45∘(CFRP −45). The results of a stainless-steel hydrofoil with the same geometry and conditions are used as a reference. Simulation results have been validated carefully against experimental data. Several fundamental mechanisms are dictated through simulation results and mode decomposition, including the multistage shedding process, the influence of the bend–twist coupling effect on cavity behaviors, cavitation–vortex interaction, and kinematics of coherent structures. The main reason for the generation of a secondary re-entrant jet is that the primary cloud cavity collapse leads to high pressure, which spreads to the residual sheet cavity closure and then induces a high-pressure gradient. The negative bend–twist coupling effect causes the CFRP −45 hydrofoil to exhibit a smaller cloud cavity scale and non-uniform re-entrant jet strength in the spanwise direction compared to the stainless-steel hydrofoil. Modal decomposition via proper orthogonal decomposition and dynamic mode decomposition indicates that the dominant coherent structures in the cloud cavitating flow include the large-scale cloud cavity, rotating structures due to the re-entrant jet, attached cavity, and small-scale vortex in the wake. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to complex cloud cavitating flow around a composite hydrofoil.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference38 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3