Energetic preference and topological constraint effects on the formation of DNA twisted toroidal bundles

Author:

Nguyen Nhung T. T.1ORCID,Ngo Anh T.2,Hoang Trinh X.13ORCID

Affiliation:

1. Institute of Physics, Vietnam Academy of Science and Technology 1 , 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam

2. Chemical Engineering Department, University of Illinois at Chicago 2 , Chicago, Illinois 60608, USA

3. Graduate University of Science and Technology, Vietnam Academy of Science and Technology 3 , 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam

Abstract

DNA toroids are compact torus-shaped bundles formed by one or multiple DNA molecules being condensed from the solution due to various condensing agents. It has been shown that the DNA toroidal bundles are twisted. However, the global conformations of DNA inside these bundles are still not well understood. In this study, we investigate this issue by solving different models for the toroidal bundles and performing replica-exchange molecular dynamics (REMD) simulations for self-attractive stiff polymers of various chain lengths. We find that a moderate degree of twisting is energetically favorable for toroidal bundles, yielding optimal configurations of lower energies than for other bundles corresponding to spool-like and constant radius of curvature arrangements. The REMD simulations show that the ground states of the stiff polymers are twisted toroidal bundles with the average twist degrees close to those predicted by the theoretical model. Constant-temperature simulations show that twisted toroidal bundles can be formed through successive processes of nucleation, growth, quick tightening, and slow tightening of the toroid, with the two last processes facilitating the polymer threading through the toroid’s hole. A relatively long chain of 512 beads has an increased dynamical difficulty to access the twisted bundle states due to the polymer’s topological constraint. Interestingly, we also observed significantly twisted toroidal bundles with a sharp U-shaped region in the polymer conformation. It is suggested that this U-shaped region makes the formation of twisted bundles easier by effectively reducing the polymer length. This effect can be equivalent to having multiple chains in the toroid.

Funder

Quỹ Đổi mới sáng tạo Vingroup

National Foundation for Science and Technology Development

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3