On scalar transport in an oscillatory Couette–Poiseuille flow under the effects of heterogeneous and bulk chemical reactions: A multi-scale approach

Author:

Poddar Nanda12ORCID,Das Debabrata1ORCID,Dhar Subham1ORCID,Mondal Kajal Kumar1ORCID

Affiliation:

1. Department of Mathematics, Cooch Behar Panchanan Barma University 1 , Cooch Behar 736101, India

2. Department of Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev 2 , Sde Boker 8499000, Israel

Abstract

This research presents an analytical solution to explore a two-dimensional concentration transport of solute in an oscillatory Couette–Poiseuille flow between two parallel plates in the presence of homogeneous and heterogeneous reactions. Mei's homogenization method up to second order approximation is used to find the multi-dimensional concentration distributions, namely, transverse concentration distribution, longitudinal concentration distribution, mean concentration distribution, Taylor dispersion coefficient, and the transverse uniformity simultaneously for three different flow conditions: steady, periodic, and the joint effect of steady and periodic Couette–Poiseuille flow for the first time. The distribution of transverse concentration of solute is studied due to its importance in oil lubrication and industrial applications. The transverse variation rate shows that the introduction of heterogeneous reactions cause transverse non-uniformity, but it is significant to note that homogeneous reaction has no effect on it. Furthermore, the maximum variation rate of the concentration cloud is obtained along the upstream and downstream directions when the boundary absorption is considered at steady and moving plates, respectively. To validate the present analytical model, a comparison is performed with the numerical solution and has achieved an excellent agreement. The outcomes of the present study may be helpful to develop a better understanding of the process of contamination and to prevent the pollution in the flow.

Funder

University Grants Commission

Council of Scientific and Industrial Research, India

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3