Spatiotemporal nonlinear evolution of the laser pulse and turbulence generation in laser produced plasmas

Author:

Singh Indraj1ORCID,Gupta P. K.2,Uma R.1,Sharma R. P.1

Affiliation:

1. Department of Energy Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India

2. Department of Physics, Acharya Narendra Dev College, University of Delhi, Govindpuri, New Delhi 110019, India

Abstract

This study presents a model to understand the behavior of the turbulence generated in the magnetic field of mega gauss order during high-intensity laser interaction with magnetized plasma. The modified nonlinear Schrödinger (MNLS) equation is developed by contemplating the effect of the group velocity dispersion, diffraction, and nonlinearity induced by the relativistic variation of electron mass and the nonlinear ponderomotive force. Numerical simulation is carried out to solve the dimensionless MNLS equation. The simulation results show the generation of the solitary wave type coherent structures in the nonlinear spatiotemporal evolution of the laser pulse at the early stage, but subsequent turbulence generation has also been observed. The ensemble-averaged turbulent power spectrum has been studied and the power-law scaling is approximately ∼ [Formula: see text](a solid red line of scaling [Formula: see text] is given for reference). To get insight into the spatiotemporal nonlinear development of the laser pulse, while propagating in the plasma medium, a semi-analytical model has also been presented. The present study could be substantial in replicating astrophysical scenarios by laboratory simulations along with understanding the underlying quintessential physics of magnetic turbulence.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

University Grants Commission

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3