Cross-beam energy transfer between spatially smoothed laser beams

Author:

Oudin A.12ORCID,Debayle A.12ORCID,Ruyer C.12ORCID,Benisti D.12ORCID

Affiliation:

1. CEA, DAM, DIF, F-91297 Arpajon, France

2. Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France

Abstract

The crossing of two spatially smoothed laser beams amounts to the crossings of a large number of speckles. The energy transfer between two of these speckles is mediated by laser induced electron/ion density ripples that act as a Bragg grating. In a weakly Landau-damped plasma, this ion acoustic wave (IAW) may propagate from one crossing region to another, hence perturbing the local electron/ion grating [Oudin et al. Phys. Rev. Lett. 127, 265001 (2021)] even without phase shift between IAWs. In this paper, we investigate how the phase-shifted IAWs generated at the speckle scale interfere and affect the overall energy exchange. To this aim, we perform 2D particle-in-cell simulations with in-phase and out-of-phase Gaussian beams. In the latter situation, which better matches a smoothed laser beam, we find that the destructive interferences between the ion waves significantly reduce the energy exchange compared to the plane wave case. Additional 2D particle-in-cell simulations with random phase plate smoothed laser beams confirm the relevance of this effect in carbon plasma. A second effect is that cross-beam energy transfer (CBET) inhibition persists in strongly damped plasmas when the speckle radius is comparable with the IAW damping distance. There, the reduction in the IAW amplitude is attributed to the smallness of the speckle's envelop. These results are supported by a simple model that analytically estimates the CBET and clearly shows that neglecting the inhomogeneities in the laser intensity would usually lead to an overestimate of the energy exchange.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3