Time-dependent electron Boltzmann equation for hypersonic plasmas

Author:

Petrov George M.1ORCID,Petrova Tzvetelina B.1ORCID,Peñano Joseph R.1

Affiliation:

1. Naval Research Laboratory, Plasma Physics Division , 4555 Overlook Ave. SW, Washington, District of Columbia 20375, USA

Abstract

The electron kinetics in hypersonic plasmas is modeled by solving the time-dependent electron Boltzmann equation for the electron energy distribution function (EEDF). This plasma is created by strong shock compression of the gas in front of a vehicle moving with hypersonic speed. The main source of energy for the electrons is gas heating due to elastic collisions and second-kind collisions (de-excitation) from vibrationally excited states of N2. We established that the electron energy distribution function is most sensitive to vibrational level populations. At mid-altitudes (tens of kilometers), the electron temperature equilibrates with the vibrational temperature on a microsecond timescale. The electron distribution function reaches steady state on a comparable timescale. Numerical simulations of air plasma showed that the electron energy distribution function is far from Maxwellian and the collision rates differ by orders of magnitude from those computed with a Maxwellian distribution. The two most important parameters for the electron kinetics and the electron energy distribution function are the vibrational temperature and ionization degree.

Funder

NRL Base Program

Publisher

AIP Publishing

Reference21 articles.

1. M. G. Dunn and S.Kang, “ Theoretical and experimental studies of reentry plasmas,” Report No. NASA-CR-2232 ( NASA Langley Research Center, 1973).

2. R. N. Gupta , J. M.Yos, R. A.Thompson, and K.-P.Lee, “ A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K,” Report No. NASA-RP-1232 ( NASA Langley Research Center, 1990).

3. Review of chemical-kinetic problems of future NASA missions. I-Earth entries;J. Thermophys. Heat Transfer,1993

4. Assessment of chemical kinetic models on hypersonic flow heat transfer;Int. J. Heat Mass Transfer,2017

5. Modification of chemical-kinetic parameters for 11-air species in re-entry flows;Int. J. Heat Mass Transfer,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3