Deterioration evolution mechanism and damage constitutive model improvement of sandstone–coal composite samples under the effect of repeated immersion

Author:

Jiang TianqiORCID,Zhu Chun,Qiao YangORCID,Sasaoka Takashi,Shimada Hideki,Hamanaka AkihiroORCID,Li WeiORCID,Chen BingbingORCID

Abstract

Underground reservoirs in coal mines, consisting of goafs (By goaf, we mean the space that remains underground after the extraction of valuable minerals), are commonly utilized for mine water storage and drainage, with their primary load-bearing structures being the “roof–coal pillar” systems. Consequently, this structure must endure the repeated immersion behavior resulting from fluctuations in the mine water level, resulting in the risk of geological disasters. This paper analyzes the variation in mechanical properties of sandstone–coal composite samples after repeated immersion cycles through axial loading tests. The results indicate that the water content of the sample exhibits a notable and rapid increase with each successive immersion cycle. This corresponds to a decrease in the stress threshold and modulus parameters of the samples. Moreover, the acoustic emission signals serve as indicators of the softening characteristics of the samples. With the increase in immersion cycles, there is an augmentation in both the frequency and extent of shear cracks. The non-linear failure characteristics of the samples become more pronounced. Consequently, water significantly weakens the cementing material between rock grains. Both sandstone and coal display a decrease in deformation resistance capabilities at a macroscopic level. The constitutive model of the composite sample was improved based on the degradation characteristics of mechanical strength and strain energy parameters, which offers enhanced accuracy in analyzing the degradation process caused by water immersion. This paper offers a crucial theoretical foundation for comprehending the deterioration evolution characteristics of the “roof–coal pillar” bearing structure affected by repeated immersion.

Funder

K. H. Renlund Foundation in Finland

China Scholarship Council

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3