Effect of plasma boundary and electrode asymmetry in planar DC discharge system

Author:

Barnwal Prashant K.1ORCID,Ganguli A.1,Narayanan R.1ORCID,Tarey R. D.1

Affiliation:

1. Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Abstract

This paper present presents a detailed characterization and analysis of plasma formation using different anode sizes in two contrasting configurations in a planar DC discharge system. One configuration has a conducting boundary (CB) formed by the conducting wall of the vacuum chamber that acts as an extended cathode. The second configuration, the Small Volume Insulated Boundary (SVIB) with a volume 22.5 times smaller than the CB system, is realized by confining the plasma completely within a fully insulating boundary. Anode sizes may be equal to the cathode size (symmetric electrodes) or smaller (asymmetric electrodes). In general, CB discharges require much lower applied voltages, showing very little variation with the pressure. Although the s ymmetric CB discharges have only single electron population, the asymmetric electrode discharges exhibit two electron populations, a high-density bulk population ( Te ∼ 2–3 eV) and a very low-density warm population ( Tw ∼ 40 eV) that serves to enhance ionization and compensate for reduced anode size. In contrast, the SVIB discharges require high voltages, show considerable variation in discharge voltage both with pressure and anode size, and have higher densities. In addition, one finds two electron populations for all anode sizes. From estimates of the anode sheath drop, it is possible to show that all CB discharges have an electron-rich anode sheath for all anode sizes. In contrast, the SVIB discharges exhibit ion-rich anode sheaths for all anode sizes, although for small-sized anodes and high pressures the sheaths transform to an electron-rich sheath.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3