Polydimethylsiloxane (PDMS)-assisted non-destructive transient thermoreflectance characterizations

Author:

Zhou Shaojie1ORCID,Meng Biwei1ORCID,Yuan Chao1ORCID

Affiliation:

1. The Institute of Technological Sciences, Wuhan University , Wuhan 430072, China

Abstract

The conventional pump–probe thermoreflectance (pump–probe TR) techniques are routinely performed on a thin (typically <100 nm) metal transducer deposited on samples, ensuring the most fundamental principle of thermoreflectance: the reflectance change (∆R/R) of the sample surface is directly and linearly related to the temperature change (∆T) within a finite temperature range. However, general metal coating methods may damage the sample by forming a mixed layer with the sample. In this article, we present a non-destructive pump–probe transient thermoreflectance (TTR) characterization using the polydimethylsiloxane (PDMS)-assisted metal transfer technique. Our method utilizes PDMS dry transfer to transfer common transducer metals (Au and Al) to the target substrate. This method effectively avoids impurities and damage to the sample. In particular, we have utilized Au as a transition layer to study the application of Al transfer in TTR measurements. The substrate thermal conductivity measurement results show that they can all be used for TTR measurement, and the thermal boundary conductance results show that the transferred metals have low bonding to the substrate. In addition, Al/Au can be transferred over a large area at room temperature compared to Au. After measurement, the samples can be restored to their original state by a simple cleaning method. This method provides a simple and reliable way to characterize samples without metal coating for TTR.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3