Linear shaped-charge jet optimization using machine learning methods

Author:

Sterbentz Dane M.1ORCID,Jekel Charles F.1ORCID,White Daniel A.1ORCID,Rieben Robert N.1ORCID,Belof Jonathan L.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory , Livermore, California 94550, USA

Abstract

Linear shaped charges are used to focus energy into rapidly creating a deep linear incision. The general design of a shaped charge involves detonating a confined mass of high explosive (HE) with a metal-lined concave cavity on one side to produce a high velocity jet for the purpose of striking and penetrating a given material target. This jetting effect occurs due to the interaction of the detonation wave with the cavity geometry, which produces an unstable fluid phenomenon known as the Richtmyer–Meshkov instability and results in the rapid growth of a long narrow jet. We apply machine learning and optimization methods to hydrodynamics simulations of linear shaped charges to improve the simulated jet characteristics. The designs that we propose and investigate in this work generally involve modifying the behavior of the detonation waves prior to interaction with the liner material. These designs include the placement of multiple detonators and the use of metal inclusions within the HE. We are able to produce a linear shaped-charge design with a higher penetration depth than the baseline case that we consider and accomplish this using the same amount of or less HE.

Funder

Lawrence Livermore National Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3