Affiliation:
1. Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
2. Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
Abstract
If a binary liquid mixture, composed of two alternative species with equal amounts, is quenched from a high temperature to a low temperature, below the critical point of demixing, then the mixture will phase separate through a process known as spinodal decomposition. However, if the two alternative species are allowed to interconvert, either naturally (e.g., the equilibrium interconversion of enantiomers) or forcefully (e.g., via an external source of energy or matter), then the process of phase separation may drastically change. In this case, depending on the nature of interconversion, two phenomena could be observed: either phase amplification, the growth of one phase at the expense of another stable phase, or microphase separation, the formation of nongrowing (steady-state) microphase domains. In this work, we phenomenologically generalize the Cahn–Hilliard theory of spinodal decomposition to include the molecular interconversion of species and describe the physical properties of systems undergoing either phase amplification or microphase separation. We apply the developed phenomenology to accurately describe the simulation results of three atomistic models that demonstrate phase amplification and/or microphase separation. We also discuss the application of our approach to phase transitions in polyamorphic liquids. Finally, we describe the effects of fluctuations of the order parameter in the critical region on phase amplification and microphase separation.
Funder
National Science Foundation
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献