Considerations for extracting moiré-level strain from dark field intensities in transmission electron microscopy

Author:

Craig Isaac M.1ORCID,Van Winkle Madeline1ORCID,Ophus Colin2ORCID,Bediako D. Kwabena13ORCID

Affiliation:

1. Department of Chemistry, University of California, Berkeley 1 , Berkeley, California 94720, USA

2. The Molecular Foundry, Lawrence Berkeley National Laboratory 2 , Berkeley, California 94720, USA

3. Chemical Sciences Division, Lawrence Berkeley National Laboratory 3 , Berkeley, California 94720, USA

Abstract

Bragg interferometry (BI) is an imaging technique based on four-dimensional scanning transmission electron microscopy (4D-STEM) wherein the intensities of select overlapping Bragg disks are fit or more qualitatively analyzed in the context of simple trigonometric equations to determine local stacking order. In 4D-STEM based approaches, the collection of full diffraction patterns at each real-space position of the scanning probe allows the use of precise virtual apertures much smaller and more variable in shape than those used in conventional dark field imaging such that even buried interfaces marginally twisted from other layers can be targeted. With a coarse-grained form of dark field ptychography, BI uses simple physically derived fitting functions to extract the average structure within the illumination region and is, therefore, viable over large fields of view. BI has shown a particular advantage for selectively investigating the interlayer stacking and associated moiré reconstruction of bilayer interfaces within complex multi-layered structures. This has enabled investigation of reconstruction and substrate effects in bilayers through encapsulating hexagonal boron nitride and of select bilayer interfaces within trilayer stacks. However, the technique can be improved to provide a greater spatial resolution and probe a wider range of twisted structures, for which current limitations on acquisition parameters can lead to large illumination regions and the computationally involved post-processing can fail. Here, we analyze these limitations and the computational processing in greater depth, presenting a few methods for improvement over previous works, discussing potential areas for further expansion, and illustrating the current capabilities of this approach for extracting moiré-scale strain.

Funder

Division of Materials Research

National Defense Science and Engineering Graduate

Basic Energy Sciences

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3