Lattice Boltzmann simulation on particle suspensions containing porous particles in a narrow channel

Author:

Li Zhitao,Tao ShiORCID,Zhang Chunhua,Jia Zhouxia,Wang LiangORCID,Lu GuiORCID

Abstract

The suspension of porous particles in fluids occurs widely in various natural and industrial processes. However, the sedimentation behavior of porous particles is not extensively understood as the solid impermeable counterparts. In this work, the drafting–kissing–tumbling (DKT) phenomenon in a narrow channel containing porous particles is investigated by the multi-relaxation-time (MRT) lattice Boltzmann method (LBM). The initial particle spacing Lp* (1.5∼6) and Darcy number Da (8×10−6∼6×10−2) are examined on the sedimentation process of two particles under three initial arrangements, i.e., the trailing particle is porous (case 1), the leading particle is porous (case 2), and both the particles are porous (case 3). The results show that the presence of porous particles can enhance the interactions between two particles, and increasing the penetrability reduces the particle drag force to accelerate sedimentation. The drafting time is insensitive to Da at small Lp*, and it decreases with Da at large Lp* in cases 1 and 3 while it changes to increase with Da in case 2. A phase diagram with respect to Da and Lp* is further extracted to identify three sedimentation modes of particle pairs. It is found that the transition between the one-off DKT and repeated DKT modes is not affected by Lp* in cases 2 and 3, while the critical condition for the non-DKT and one-off DKT modes depends strongly on Da and Lp* in case 2.

Funder

National Natural Science Foundation of China

Joint Innovation Fund of Beijing Institute of Structure and Environment Engineering

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3