The structure inference of flocking systems based on the trajectories

Author:

Liang Jingjie1,Qi Mingze1ORCID,Gu Kongjing1,Liang Yuan1,Zhang Zhang2,Duan Xiaojun1ORCID

Affiliation:

1. College of Science, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China

2. School Systems Science, Beijing Normal University, Beijing 100875, People’s Republic of China

Abstract

The interaction between the swarm individuals affects the dynamic behavior of the swarm, but it is difficult to obtain directly from outside observation. Therefore, the problem we focus on is inferring the structure of the interactions in the swarm from the individual behavior trajectories. Similar inference problems that existed in network science are named network reconstruction or network inference. It is a fundamental problem pervading research on complex systems. In this paper, a new method, called Motion Trajectory Similarity, is developed for inferring direct interactions from the motion state of individuals in the swarm. It constructs correlations by combining the similarity of the motion trajectories of each cross section of the time series, in which individuals with highly similar motion states are more likely to interact with each other. Experiments on the flocking systems demonstrate that our method can produce a reliable interaction inference and outperform traditional network inference methods. It can withstand a high level of noise and time delay introduced into flocking models, as well as parameter variation in the flocking system, to achieve robust reconstruction. The proposed method provides a new perspective for inferring the interaction structure of a swarm, which helps us to explore the mechanisms of collective movement in swarms and paves the way for developing the flocking models that can be quantified and predicted.

Funder

National Natural Science Foundation of China

Postgraduate Scientific Research Innovation Project of Hunan Province

Hunan Science and Technology Plan Project

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3