Ab initio morphology prediction of Pd, Ag, Au, and Pt nanoparticles on (0001) sapphire substrates

Author:

Ishii Akio1ORCID,Nakamura Nobutomo2ORCID

Affiliation:

1. Department of Mechanical Science and Bioengineering, Osaka University 1 , Osaka 560-8531, Japan

2. Graduate School of Engineering, Osaka University 2 , 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan

Abstract

We energetically predict the morphology of Pd, Ag, Au, and Pt nanoparticles on (0001) sapphire substrates, using density functional theory (DFT) simulations and the well-known Young–Dupre equation. In all cases, the contact angles exceed 90°, indicating that the nanoparticles are spherical. Notably, Au nanoparticles exhibit a higher contact angle than those of their counterparts. The validity of the proposed abinitio nanoparticle morphology prediction approach based on DFT simulations was assessed in comparison with our previous experimental findings pertaining to the time variation of the full width at half maximum (FWHM) of the resonant peak. Furthermore, the diffusivities of single Pd, Ag, Au, and Pt atoms on the substrate were evaluated by calculating the activation energy, offering insights into the underlying physics governing the timing of FWHM peaks. The analysis confirms a higher diffusivity of Au and Ag compared with Pd and Pt. According to the comparison between DFT and experiment results, although no clear relation is observed between the contact angles and timing of FWHM peaks, the diffusivity of sputtered atoms may influence the timing of FWHM peaks. Thus, timing can help to clarify the nanoparticle size, rather than shape.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3